Search results for "quantum electrodynamics"

showing 10 items of 809 documents

Quantum Computing Experiments with Cold Trapped Ions

2016

PhysicsQuantum technologyQuantum networkOpen quantum systemQubitQuantum dynamicsCavity quantum electrodynamicsQuantum simulatorAtomic physicsTrapped ion quantum computerQuantum Information
researchProduct

CONSTRUCTION OF METASTABLE STATES IN QUANTUM ELECTRODYNAMICS

2004

In this paper, we construct metastable states of atoms interacting with the quantized radiation field. These states emerge from the excited bound states of the non-interacting system. We prove that these states obey an exponential time-decay law. In detail, we show that their decay is given by an exponential function in time, predicted by Fermi's Golden Rule, plus a small remainder term. The latter is proportional to the (4+β)th power of the coupling constant and decays algebraically in time. As a result, though it is small, it dominates the decay for large times. A central point of the paper is that our remainder term is significantly smaller than the one previously obtained in [1] and as…

PhysicsCoupling constantStatistical and Nonlinear PhysicsExponential functionsymbols.namesakeQuantum mechanicsQuantum electrodynamicsMetastabilityExcited stateBound statesymbolsFermi's golden ruleRemainderMathematical PhysicsFermi Gamma-ray Space TelescopeReviews in Mathematical Physics
researchProduct

Structure of longitudinal chromomagnetic fields in high energy collisions

2014

We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial fields correspond to a color field condensate exhibiting domain-like structure over distance scales of order the saturation scale. At later times universal scaling emerges at large distances for all ensembles, with a nontrivial critical exponent. Finally, we compare the results for the Wilson loop to the two-point correlator of magnetic fields.

We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial like structure over distance scales of oder the saturation scale. At later times universal scaling emerges at large distances for all ensembles with a nontrivial critical exponent. Finally we compare the resulats for the Wilson loop to the two-point correlator of magnetic fields. (C) 2014 The Authors. Published by Elsevier BV This is an open access article under the CC BY licenseNuclear and High Energy PhysicsWilson loopLARGE NUCLEINuclear TheoryField (physics)FOS: Physical sciences114 Physical sciences01 natural sciencesColor-glass condensateRENORMALIZATION-GROUPNuclear Theory (nucl-th)GLUON DISTRIBUTION-FUNCTIONSHigh Energy Physics - Phenomenology (hep-ph)Light cone0103 physical sciencesSCATTERINGGauge theory010306 general physicsSMALL-XEffective actionPhysicsCORRELATORSta114010308 nuclear & particles physicsCOLOR GLASS CONDENSATERenormalization groupEVOLUTIONJIMWLK EQUATIONHigh Energy Physics - PhenomenologySATURATIONQuantum electrodynamicsCritical exponentPhysics Letters B
researchProduct

Electromagnetic moments of quasi-stable particle

2010

We deal with the problem of assigning electromagnetic moments to a quasi-stable particle (i.e., a particle with mass located at particle's decay threshold). In this case, an application of a small external electromagnetic field changes the energy in a non-analytic way, which makes it difficult to assign definitive moments. On the example of a spin-1/2 field with mass $M_{*}$ interacting with two fields of masses $M$ and $m$, we show how a conventionally defined magnetic dipole moment diverges at $M_{*}=M+m$. We then show that the conventional definition makes sense only when the values of the applied magnetic field $B$ satisfy $|eB|/2M_{*}\ll|M_{*}-M-m|$. We discuss implications of these re…

Electromagnetic fieldPhysicsNuclear and High Energy PhysicsField (physics)Magnetic energyMagnetic momentNuclear TheoryHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesOptical fieldMagnetic fieldNuclear Theory (nucl-th)Particle decayMagnetizationHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeQuantum electrodynamicsQuantum mechanics
researchProduct

Self-dressing in classical and quantum electrodynamics

2003

A short review is presented of the theory of dressed states in nonrelativistic QED, encompassing fully and partially dressed states in atomic physics. This leads to the concept of the reconstruction of the cloud of virtual photons and of self-dressing. Finally some recent results on the classical counterpart of self-dressing are discussed and a comparison is made with the QED case. Attention is drawn to open problems and future lines of research are briefly outlined.

Condensed Matter::Quantum GasesPhysicsbusiness.industryGeneral Physics and AstronomyVirtual particleCloud computingNonlinear Sciences::Exactly Solvable and Integrable SystemsQuantum mechanicsQuantum electrodynamicsquantum electrodynamicsPhysics::Atomic Physicsbusinessclassical self-dressingQuantum self-dressing
researchProduct

Meson exchange and isobar current effects in nuclear photon scattering

1980

Explicit expressions of meson exchange and isobar current contributions to the nuclear two-photon amplitude are derived in the non-relativistic limit. In connection with this amplitude the requirement of gauge invariance on the photon scattering amplitude and on the nuclear electromagnetic interaction operator is discussed in detail.

PhysicsNuclear and High Energy PhysicsMesonOperator (physics)Nuclear TheoryConnection (mathematics)Nuclear physicsScattering amplitudeAmplitudeQuantum electrodynamicsIsobarNuclear fusionGauge theoryNuclear ExperimentZeitschrift f�r Physik A Atoms and Nuclei
researchProduct

Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes

2008

We have used the analogy between gravitational systems and nonhomogeneous fluid flows to calculate the density-density correlation function of an atomic Bose-Einstein condensate in the presence of an acoustic black hole. The emission of correlated pairs of phonons by Hawking-like process results into a peculiar long-range density correlation. Quantitative estimations of the effect are provided for realistic experimental configurations.

PhysicsCondensed Matter::Quantum GasesBOSONSSonic black holeQuantum field theory in curved spacetimePhononAtomic and Molecular Physics and OpticsBlack holeGravitationCorrelation function (statistical mechanics)General Relativity and Quantum CosmologyHIERARCHYQuantum mechanicsQuantum electrodynamicsANALOGOUTPUT COUPLERSignature (topology)ATOM LASERHawking radiation
researchProduct

Photon-pion charge asymmetry in e+e− reactions: A laboratory for perturbative QCD phases

1987

Abstract The charge asymmetry in the production of a photon and a meson in e + e - annihilation is studied in perturbative QCD. This quantity measures the interference of amplitudes governed by different momentum scales. It is thus a powerful tool to probe strong interaction phases at high energy and in the context of Sudakov exponentiation and the chromo Coulomb phase. We find a null result at the lowest non-trivial order off α s in the entire kinematic region described by perturbative QCD.

PhysicsNuclear and High Energy PhysicsParticle physicsAnnihilationChiral perturbation theoryMesonHigh Energy Physics::Latticemedia_common.quotation_subjectHigh Energy Physics::PhenomenologyStrong interactionPerturbative QCDAsymmetryPionQuantum electrodynamicsCoulombHigh Energy Physics::Experimentmedia_commonPhysics Letters B
researchProduct

Second quantization and atomic spontaneous emission inside one-dimensional photonic crystals via a quasinormal-modes approach

2004

An extension of the second quantization scheme based on the quasinormal-modes theory to one-dimensional photonic band gap (PBG) structures is discussed. Such structures, treated as double open optical cavities, are studied as part of a compound closed system including the electromagnetic radiative external bath. The electromagnetic field inside the photonic crystal is successfully represented by a new class of modes called quasinormal modes. Starting from this representation we introduce the Feynman's propagator to calculate the decay rate of a dipole inside a PBG structure, related to the density of modes, in the presence of the vacuum fluctuations outside the one-dimensional cavity.

Electromagnetic fieldPhysicsPhysics::OpticsPropagatorSecond quantizationDipolesymbols.namesakeQuantum mechanicsQuantum electrodynamicssymbolsFeynman diagramSpontaneous emissionQuantum fluctuationPhotonic crystal
researchProduct

Mass and width of the Delta resonance using complex-mass renormalization

2016

The pole mass and width of the Delta resonance are calculated in the relativistic chiral effective field theory approach. We choose a systematic power-counting procedure by applying the complex-mass scheme (CMS).

DeltaPhysicsRenormalization010308 nuclear & particles physicsPhysicsQC1-999Quantum electrodynamics0103 physical sciencesEffective lagrangianEffective field theory010306 general physics01 natural sciencesResonance (particle physics)EPJ Web of Conferences
researchProduct